# AmerGen



Nuclear

# Oyster Creek Generating Station REGULATORY CONFERENCE

**September 27, 2004** 

Emergency Diesel Generator 1
Degraded Cooling Fan Event

#### **AGENDA**

- Objectives William Levis
- Finding Bud Swenson
- Diesel Testing and Results *John A. Magee*
- Risk Assessment Michael P. Gallagher
- Conclusion Bud Swenson

Objectives

William Levis

## **Objectives**

- Provide additional information addressing ability of Emergency Diesel Generator (EDG) 1 to perform its function.
- Provide clear and effective applicability analysis of Joliet Diesel Testing.
- Provide overall risk assessment of the significance of the event.

Finding

**Bud Swenson** 

## Finding

• Potentially Greater Than Green Finding - involving failure to follow written procedures to torque the cooling fan drive shaft bearing bolts following fan belt replacement for maintenance on EDG 1 during 24-month overhaul.

#### Resolution

- AmerGen agrees with Performance Deficiency.
- Root Cause Human performance event involving the failure of plant personnel to follow the implementing procedure.
- AmerGen has taken extensive corrective actions to prevent recurrence.

## Presentation Next Steps

- Diesel Testing & Results: John A. Magee
  - EDG 1 operation was degraded; however, the event did not involve a failure of the EDG.
  - Joliet Test was directly applicable to EDG 1 condition and provided conservative operating information.
  - EDG 1 was capable of performing its safety function for a portion of the mission time.
  - EDG 1 would have run a minimum of 6 hours and likely much longer.
- Risk Assessment: Michael P. Gallagher
  - The Risk Analysis demonstrates that the consequences of this Finding are of Very Low Safety Significance.

# Diesel Testing and Results

John A. Magee

# Diesel Testing Presentation Outline

- Background
- Factual Observations
- Diesel Generator Fan Drive Test
- Key Similarities
   Test Diesel Generator versus Oyster Creek EDG
- Key Differences
   Test Diesel Generator versus Oyster Creek EDG
- Test Diesel Generator Results
- Analytical Results
- Conclusions

### Air - Cooled Diesel Generator



Radiator Cooling System for Oyster Creek EDG

# General Arrangement of Diesel Generator



# Close-up of Pillow Block Bearing Area



#### **Factual Observations**

- OC EDG 1 completed 24-month overhaul on 04/30/04.
  - Fan Belt Replacement was performed during overhaul.
- Multiple EDG runs were performed and EDG 1 was declared operable on 04/30/04.
- On 05/11/04, a surveillance load test was run for 1.5 hours with no problems noted.
- On 05/17/04, a surveillance load test was run for 1.5 hours.
  - This concluded in manual shutdown by operations, based on unusual noise and observed bearing movement.

#### **Factual Observations**

- OC EDG 1 continued to run until it was manually shutdown.
  - The OC EDG 1 did not fail to start or run.
- During this event Operations recorded all engine temperature parameters which were within normal range.
- Inspections of the EDG 1 revealed:
  - Pillow block bearing upper bolt loose and the lower bolt missing (later found on the floor)
  - No belt wear or damage observed (belt reused)
  - Bolts were not damaged
  - No damage to the pillow block bearing

# OC EDG 1 Multiple Starts and Stops

#### OC EDG 1 run times:

| 4/26/04 04:20 - EDG1 OOS for 24-month inspection 4/29/04 06:13 - EDG1 started for idle run and testing                                                                      |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 4/29/04 08:11 - EDG1 idle run testing ended -                                                                                                                               | 1:58 run time |
| 4/29/04 22:43 - EDG1 idle start for testing<br>4/29/04 22:57 - EDG1 idle run ended -<br>4/29/04 23:28 - EDG1 fast start testing                                             | 0:14 run time |
| 4/29/04 23:46 - EDG1 fast start ended -                                                                                                                                     | 0:17 run time |
| 4/30/04 02:31 - EDG1 load test run                                                                                                                                          |               |
| 4/30/04 03:00 - EDG1 load test run ended -<br>4/30/04 03:01 - EDG1 load test run                                                                                            | 0:29 run time |
| 4/30/04 05:56 - EDG1 load test run ended -                                                                                                                                  | 2:55 run time |
| 4/30/04 06:32 - EDG1 load test run from CR<br>4/30/04 07:01 - EDG1 load test run ended -                                                                                    | 0:29 run time |
| 4/30/04 12:16 - EDG1 surveillance run<br>4/30/04 13:36 - EDG1 surveillance run ended -                                                                                      | 1:20 run time |
| 5/11/04 01:19 - EDG1 surveillance run<br>5/11/04 02:45 - EDG1 surveillance run ended -                                                                                      | 1:26 run time |
| 5/17/04 03:34 - EDG1 surveillance run<br>5/17/04 04:57 - EDG1 surveillance run ended -<br>5/17/04 17:50 - EDG1 Declared Available<br>5/17/04 20:25 - EDG1 Declared Operable | 1:23 run time |

#### Diesel Generator Fan Drive Test

- Demonstrate operation of the fan drive in the as-found, degraded condition
  - -Fan drive shaft pillow block bearing support missing its lower bolt and a loosened upper bolt.
  - -Utilized an EMD MP36 DG at Joliet Station as test specimen because of the fan drive similarities to OC EDG 1.

## Comparison of Assemblies



Test DG

Lower Drive Shaft Pillow Block Bearing, Fan Belt and Sheave Assembly

OC EDG 1-

Lower Drive Shaft Pillow Block Bearing, Fan Belt and Sheave Assembly



#### Test Diesel Generator Results

- 1. Test DG ran for approximately 6 hours of operation.
- 2. Radiator fan operated at reduced speeds due to drive fan belt slippage.
- 3. High coolant temperature led to an automatic engine shutdown.
- 4. Demonstrated the Upper Pillow Block Bearing Bolt would not back out.

# Key Similarities Test DG versus Oyster Creek EDG

- 1. Identical Fan Design and Size.
- 2. Engine driven, lower fan shaft, speed (rpm's) are the same.
- 3. Identical OC EDG Fan Belt was installed on the Test DG to assure unit comparability.
- 4. Identical OC EDG Lower Drive Shaft and Pillow Block were installed on the Test DG to assure unit comparability.
- 5. The Bearing Bolts, removed from the OC EDG, were installed on the Test DG.

# Key Differences Test DG versus Oyster Creek EDG

- 1. Upper / Lower Sheave Sizes are different.
  - This results in a more conservative test.
- 2. Test DG trip logic was enabled.
  - The OC EDG 1 logic would have bypassed these protective trips (and others) for emergency starts.
  - This results in a more conservative test.
- 3. Fixed Air Flow vs. Modulating Fan Louvers
  - OC EDG 1 louvers lock full open > 200°F.

## Additional Analysis

- Independent analysis was performed by MPR Associates, Diesel Generator Experts, of the degraded EDG 1 fan drive.
- Using the demonstrated pillow block movement of the test diesel, the EDG 1 belt slippage was calculated and subsequent reduction in air flow was modeled.
- This sensitivity analysis demonstrated that the EDG 1 belt slippage would be less than the Test DG; therefore, EDG 1 would have run cooler and longer.
- EDG 1 would have run a minimum of 6 hours and likely much longer.

#### Conclusions

- EDG 1 operation was degraded; however, the event did not involve a failure of the EDG.
- Test DG results are directly applicable to EDG 1 condition and provided conservative operating information.
  - Demonstrated the pillow block motion in the degraded state.
  - Demonstrated that the upper pillow block bearing bolt would not have backed out.
  - Sensitivity analysis demonstrated that the EDG 1 belt slippage would be less than the Test DG; therefore, EDG 1 would have run cooler and longer.
- EDG 1 was capable of performing its safety function for a portion of the mission time.
- EDG 1 would have run a minimum of 6 hours and likely much longer.

# Presentation Next Steps

- Risk Assessment: Michael P. Gallagher
  - The Risk Analysis demonstrates that the consequences of this Finding are of Very Low Safety Significance.

# Risk Assessment

Michael P. Gallagher

# Risk Analysis Approach

- Conservative and Realistic
- Credits Actual Diesel Condition, i.e., Diesel was Degraded but not Failed
- Supported by precedent

# Risk Analysis Approach Dominant Core Damage Sequences

- Station Black-Out (Loss of All AC Power)
  - No Offsite Power Recovery at 8 Hours
- Station Black-Out (Loss of All AC Power)
  - Recirc Pump Seal LOCA
  - No Offsite Power Recovery at 1 Hour
- \*Station Black-Out (Loss of All AC Power)
  - Stuck Open Relief Valve
  - No Offsite Power Recovery at 0.5 Hour
- Station Black-Out (Loss of All AC Power)
  - Isolation Condenser Make-Up Failure
  - No Offsite Power Recovery at 1 Hour

<sup>\*</sup> SPAR sequence of interest from NRC preliminary analysis

- NUREG/CR-5496 LOOP Frequency of 0.046/year (consistent with NRC SPAR model).
- Loss of Offsite Power Recovery Curves Updated to include recent events (more conservative than NUREG/CR-5496).
- Utilizes full fault exposure of 17.5 days (consistent with NRC preliminary analysis).
- Recovery of EDG 2 Credited in SBO Scenarios (consistent with NRC SPAR model).
- Includes Best Estimate External Events Adder of 1.6E-7.

#### **LOOP Recovery Curves**



- Diesel maintenance unavailability conservatisms
  - OC PRA: 1.2% unavailability vs. OC actual performance: 0.5%
- Risk Analysis did not credit relief valve re-closure
  - 85% probability of relief valve re-closure could be utilized based on industry and plant specific data.
  - Risk analysis utilized stuck open relief valve probability of 9.16E-3 based on plant specific data.

- LERF Factor 0.1 justified based on Level 2 PRA analysis
- OC Basis:
  - Offsite Power Recovery before Vessel Breach supports "wet" drywell floor via Containment Spray
  - Offsite Power Recovery before Vessel Breach supports potential for In-Vessel Recovery
  - OC Mark I concrete curb minimizes potential for immediate drywell shell interactions (NRC Mark I Containment Performance Issue Evaluation)

## Degraded Diesel Analysis

- EDG 1 did not fail to start and run.
- Conservatively credits 6 hours EDG run time, although EDG 1 would likely have run much longer.
- EDG 1 is assumed to start and run for 6 hours with weighted random failure probabilities included. Then assumes EDG 1 failed at 6 hours.
- Conservatively does not credit EDG 1 recovery.
- No common cause factor affecting redundant EDG was verified.
- Includes Two Fault Exposure Periods
  - 11.5 days from return-to-service to beginning of first surveillance test (credited 9 hours available run time)
  - 6 days from beginning of first surveillance test to end of second surveillance test (credited 6 hours available run time)

#### Precedent

- NRC risk significance determinations have accepted credit for the capability of a degraded component to perform its safety function for a portion of the mission time.
  - Susquehanna Station EDG Finding IR # 2004-07
  - Cooper Station EDG Finding IR # 2004-03
  - Surry Station EDG Finding IR # 2001-06

### Results

|                                                                       | Core Damage<br>Frequency                                                            | Large Early Release<br>Frequency                                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| AmerGen Degraded Diesel Analysis – With Credit for 6 Hour Joliet Test | Internal = 5.0E-7  External = 1.6E-7  Total = 6.6E-7  Very Low Safety  Significance | Internal* = 5.4E-8  External** = 1.6E-8  Total = 7.0E-8  Very Low Safety  Significance |
| Green - White<br>Threshold                                            | 1.0 E-6                                                                             | 1.0 E-7                                                                                |

<sup>\*</sup>Based on Detailed Level II PRA

<sup>\*\*</sup>Based on LERF Multiplier (0.1)

# Sensitivity of Results

|                                                                             | Core Damage Frequency        |
|-----------------------------------------------------------------------------|------------------------------|
| AmerGen Degraded Diesel<br>Analysis – With Credit for 6 Hour<br>Joliet Test | Internal = 5.0E-7            |
|                                                                             | External = 1.6E-7            |
|                                                                             | Total = 6.6E-7               |
|                                                                             | Very Low Safety Significance |
| AmerGen Degraded Diesel<br>Analysis – With Credit for 9 Hour<br>Run Time    | Internal = $4.1E-7$          |
|                                                                             | External = 1.6E-7            |
|                                                                             | Total = 5.7E-7               |
|                                                                             | Very Low Safety Significance |
| AmerGen Degraded Diesel<br>Analysis – With Credit for 12 Hour<br>Run Time   | Internal = $3.7E-7$          |
|                                                                             | External = 1.6E-7            |
|                                                                             | Total = 5.3E-7               |
|                                                                             | Very Low Safety Significance |

# Risk Analysis Conclusions

- AmerGen's Risk Analysis is appropriately conservative and realistic.
- AmerGen's Risk Analysis conservatively credited 6 hours EDG 1 run time, although the EDG would likely have run much longer.
- Precedent in risk significance determinations has credited the capability of a degraded EDG to perform its safety function for a portion of the mission time.
- The Risk Analysis demonstrates that the consequences of this Finding are of Very Low Safety Significance.

# Conclusion

**Bud Swenson** 

#### **Conclusions**

- AmerGen agrees with Performance Deficiency and has implemented extensive corrective actions.
- EDG 1 operation was degraded; however, the event did not involve a failure of the EDG.
- Joliet Test was directly applicable to EDG 1 condition and provided conservative operating information.
- EDG 1 was capable of performing its safety function for a port on of the mission time.
- EDG 1 would have run a minimum of 6 hours and likely much longer.
- The Risk Analysis demonstrates that the consequences of this Finding are of Very Low Safety Significance.